Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Methods Mol Biol ; 2806: 229-242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676807

RESUMO

Genomic profiling has identified therapeutic targets for precision treatment of certain cancers, but many patients lack actionable mutations. Additional omics approaches, like proteomics and phosphoproteomics, are essential for comprehensive mapping of cancer-associated molecular phenotypes. In vivo models, such as cell line and patient-derived xenografts (PDX), offer valuable insights into cancer biology and treatment strategies.This chapter presents a semiautomated high-throughput workflow for integrated proteomics and phosphoproteomics analysis on the Kingfish platform coupled with MagReSyn® Zr-IMAC HP. It enhances protein extraction from in vivo xenograft samples and provides better insights into cancers with poor prognosis. The approach successfully identified over 11,000 unique phosphosites and ~6000 proteins in SJSA-1 pediatric osteosarcoma xenografts, demonstrating its efficacy. This workflow is a valuable tool for studying tumor biology and developing precision oncology strategies.


Assuntos
Biomarcadores Tumorais , Fosfoproteínas , Proteômica , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Proteômica/métodos , Biomarcadores Tumorais/metabolismo , Camundongos , Fosfoproteínas/metabolismo , Linhagem Celular Tumoral , Neoplasias/metabolismo , Neoplasias/patologia , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Criança
2.
Nat Commun ; 15(1): 3219, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622143

RESUMO

Diverse aerobic bacteria use atmospheric hydrogen (H2) and carbon monoxide (CO) as energy sources to support growth and survival. Such trace gas oxidation is recognised as a globally significant process that serves as the main sink in the biogeochemical H2 cycle and sustains microbial biodiversity in oligotrophic ecosystems. However, it is unclear whether archaea can also use atmospheric H2. Here we show that a thermoacidophilic archaeon, Acidianus brierleyi (Thermoproteota), constitutively consumes H2 and CO to sub-atmospheric levels. Oxidation occurs across a wide range of temperatures (10 to 70 °C) and enhances ATP production during starvation-induced persistence under temperate conditions. The genome of A. brierleyi encodes a canonical CO dehydrogenase and four distinct [NiFe]-hydrogenases, which are differentially produced in response to electron donor and acceptor availability. Another archaeon, Metallosphaera sedula, can also oxidize atmospheric H2. Our results suggest that trace gas oxidation is a common trait of Sulfolobales archaea and may play a role in their survival and niche expansion, including during dispersal through temperate environments.


Assuntos
Acidianus , Archaea , Temperatura , Ecossistema , Oxirredução , Hidrogênio
3.
Cell Rep ; 43(3): 113861, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416643

RESUMO

Inherited metabolic disorders are a group of genetic conditions that can cause severe neurological impairment and child mortality. Uniquely, these disorders respond to dietary treatment; however, this option remains largely unexplored because of low disorder prevalence and the lack of a suitable paradigm for testing diets. Here, we screened 35 Drosophila amino acid disorder models for disease-diet interactions and found 26 with diet-altered development and/or survival. Using a targeted multi-nutrient array, we examine the interaction in a model of isolated sulfite oxidase deficiency, an infant-lethal disorder. We show that dietary cysteine depletion normalizes their metabolic profile and rescues development, neurophysiology, behavior, and lifelong fly survival, thus providing a basis for further study into the pathogenic mechanisms involved in this disorder. Our work highlights the diet-sensitive nature of metabolic disorders and establishes Drosophila as a valuable tool for nutrigenomic studies for informing potential dietary therapies.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Doenças Metabólicas , Lactente , Criança , Animais , Humanos , Nutrigenômica , Drosophila , Dieta , Doenças Metabólicas/genética
4.
Mol Pharm ; 21(4): 1756-1767, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415587

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterized by death and dysfunction of motor neurons that result in a rapidly progressing loss of motor function. While there are some data on alterations at the blood-brain barrier (BBB) in ALS and their potential impact on CNS trafficking of drugs, little is reported on the impact of this disease on the expression of drug-handling proteins in the small intestine and liver. This may impact the dosing of the many medicines that individuals with ALS are prescribed. In the present study, a proteomic evaluation was performed on small intestine and liver samples from postnatal day 120 SOD1G93A mice (a model of familial ALS that harbors a human mutant form of superoxide dismutase 1) and wild-type (WT) littermates (n = 7/genotype/sex). Untargeted, quantitative proteomics was undertaken using either label-based [tandem mass tag (TMT)] or label-free [data-independent acquisition (DIA)] acquisition strategies on high-resolution mass spectrometric instrumentation. Copper chaperone for superoxide dismutase (CCS) was significantly higher in SOD1G93A samples compared to the WT samples for both sexes and tissues, therefore representing a potential biomarker for ALS in this mouse model. Relative to WT mice, male SOD1G93A mice had significantly different proteins (Padj < 0.05, |fold-change|>1.2) in the small intestine (male 22, female 1) and liver (male 140, female 3). This included an up-regulation of intestinal transporters for dietary glucose [solute carrier (SLC) SLC5A1] and cholesterol (Niemann-Pick c1-like 1), as well as for several drugs (e.g., SLC15A1), in the male SOD1G93A mice. There was both an up-regulation (e.g., SLCO2A1) and down-regulation (ammonium transporter rh type b) of transporters in the male SOD1G93A liver. In addition, there was both an up-regulation (e.g., phosphoenolpyruvate carboxykinase) and down-regulation (e.g., carboxylesterase 1) of metabolizing enzymes in the male SOD1G93A liver. This proteomic data set identified male-specific changes to key small intestinal and hepatic transporters and metabolizing enzymes that may have important implications for the bioavailability of nutrients and drugs in individuals with ALS.


Assuntos
Esclerose Lateral Amiotrófica , Transportadores de Ânions Orgânicos , Animais , Feminino , Humanos , Masculino , Camundongos , Esclerose Lateral Amiotrófica/genética , Modelos Animais de Doenças , Fígado/metabolismo , Camundongos Transgênicos , Transportadores de Ânions Orgânicos/metabolismo , Proteômica , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
5.
Org Lett ; 26(9): 1828-1833, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38417822

RESUMO

Cytochrome-P450-mediated cross-linking of ribosomally encoded peptides (RiPPs) is rapidly expanding and displays great potential for biocatalysis. Here, we demonstrate that active site engineering of the biarylitide cross-linking enzyme P450Blt enables the formation of His-X-Tyr and Tyr-X-Tyr cross-linked peptides, thus showing how such P450s can be further exploited to produce alternate cyclic tripeptides with controlled cross-linking states.


Assuntos
Peptídeos Cíclicos , Peptídeos , Peptídeos Cíclicos/metabolismo , Peptídeos/química , Sistema Enzimático do Citocromo P-450 , Biocatálise , Domínio Catalítico
6.
Prog Neurobiol ; 227: 102480, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37286031

RESUMO

The epilepsies are a group of complex neurological disorders characterised by recurrent seizures. Approximately 30% of patients fail to respond to anti-seizure medications, despite the recent introduction of many new drugs. The molecular processes underlying epilepsy development are not well understood and this knowledge gap impedes efforts to identify effective targets and develop novel therapies against epilepsy. Omics studies allow a comprehensive characterisation of a class of molecules. Omics-based biomarkers have led to clinically validated diagnostic and prognostic tests for personalised oncology, and more recently for non-cancer diseases. We believe that, in epilepsy, the full potential of multi-omics research is yet to be realised and we envisage that this review will serve as a guide to researchers planning to undertake omics-based mechanistic studies.


Assuntos
Epilepsia , Proteômica , Humanos , Multiômica , Biomarcadores , Epilepsia/genética , Convulsões
7.
Nat Commun ; 14(1): 3403, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296101

RESUMO

Squamous cell carcinoma antigen recognized by T cells 3 (SART3) is an RNA-binding protein with numerous biological functions including recycling small nuclear RNAs to the spliceosome. Here, we identify recessive variants in SART3 in nine individuals presenting with intellectual disability, global developmental delay and a subset of brain anomalies, together with gonadal dysgenesis in 46,XY individuals. Knockdown of the Drosophila orthologue of SART3 reveals a conserved role in testicular and neuronal development. Human induced pluripotent stem cells carrying patient variants in SART3 show disruption to multiple signalling pathways, upregulation of spliceosome components and demonstrate aberrant gonadal and neuronal differentiation in vitro. Collectively, these findings suggest that bi-allelic SART3 variants underlie a spliceosomopathy which we tentatively propose be termed INDYGON syndrome (Intellectual disability, Neurodevelopmental defects and Developmental delay with 46,XY GONadal dysgenesis). Our findings will enable additional diagnoses and improved outcomes for individuals born with this condition.


Assuntos
Disgenesia Gonadal , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual , Masculino , Humanos , Testículo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Antígenos de Neoplasias
8.
Chem Commun (Camb) ; 59(53): 8234-8237, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37310188

RESUMO

Nonribosomal peptide synthetases produce many important peptide natural products and are centred around carrier proteins (CPs) that deliver intermediates to various catalytic domains. We show that the replacement of CP substrate thioesters by stabilised ester analogues leads to active condensation domain complexes, whereas amide stabilisation generates non-functional complexes.


Assuntos
Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeo Sintases , Peptídeo Sintases/química , Domínio Catalítico , Peptídeos/metabolismo , Panteteína
9.
EMBO J ; 42(12): e112712, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37139896

RESUMO

cGAS-STING signalling is induced by detection of foreign or mislocalised host double-stranded (ds)DNA within the cytosol. STING acts as the major signalling hub, where it controls production of type I interferons and inflammatory cytokines. Basally, STING resides on the ER membrane. Following activation STING traffics to the Golgi to initiate downstream signalling and subsequently to endolysosomal compartments for degradation and termination of signalling. While STING is known to be degraded within lysosomes, the mechanisms controlling its delivery remain poorly defined. Here we utilised a proteomics-based approach to assess phosphorylation changes in primary murine macrophages following STING activation. This identified numerous phosphorylation events in proteins involved in intracellular and vesicular transport. We utilised high-temporal microscopy to track STING vesicular transport in live macrophages. We subsequently identified that the endosomal complexes required for transport (ESCRT) pathway detects ubiquitinated STING on vesicles, which facilitates the degradation of STING in murine macrophages. Disruption of ESCRT functionality greatly enhanced STING signalling and cytokine production, thus characterising a mechanism controlling effective termination of STING signalling.


Assuntos
Imunidade Inata , Proteínas de Membrana , Camundongos , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia , Macrófagos/metabolismo , Nucleotidiltransferases/metabolismo , DNA , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
10.
Oncogene ; 42(17): 1360-1373, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36906655

RESUMO

Cellular heterogeneity in cancer is linked to disease progression and therapy response, although mechanisms regulating distinct cellular states within tumors are not well understood. We identified melanin pigment content as a major source of cellular heterogeneity in melanoma and compared RNAseq data from high-pigmented (HPCs) and low-pigmented melanoma cells (LPCs), suggesting EZH2 as a master regulator of these states. EZH2 protein was found to be upregulated in LPCs and inversely correlated with melanin deposition in pigmented patient melanomas. Surprisingly, conventional EZH2 methyltransferase inhibitors, GSK126 and EPZ6438, had no effect on LPC survival, clonogenicity and pigmentation, despite fully inhibiting methyltransferase activity. In contrast, EZH2 silencing by siRNA or degradation by DZNep or MS1943 inhibited growth of LPCs and induced HPCs. As the proteasomal inhibitor MG132 induced EZH2 protein in HPCs, we evaluated ubiquitin pathway proteins in HPC vs LPCs. Biochemical assays and animal studies demonstrated that in LPCs, the E2-conjugating enzyme UBE2L6 depletes EZH2 protein in cooperation with UBR4, an E3 ligase, via ubiquitination at EZH2's K381 residue, and is downregulated in LPCs by UHRF1-mediated CpG methylation. Targeting UHRF1/UBE2L6/UBR4-mediated regulation of EZH2 offers potential for modulating the activity of this oncoprotein in contexts in which conventional EZH2 methyltransferase inhibitors are ineffective.


Assuntos
Melaninas , Melanoma , Animais , Melaninas/metabolismo , Ubiquitinação , Melanoma/genética , Fenótipo , Diferenciação Celular , Pigmentação , Metiltransferases/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
11.
Oncogene ; 42(11): 833-847, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693952

RESUMO

We have determined that expression of the pseudokinase NRBP1 positively associates with poor prognosis in triple negative breast cancer (TNBC) and is required for efficient migration, invasion and proliferation of TNBC cells in culture as well as growth of TNBC orthotopic xenografts and experimental metastasis. Application of BioID/MS profiling identified P-Rex1, a known guanine nucleotide exchange factor for Rac1, as a NRBP1 binding partner. Importantly, NRBP1 overexpression enhanced levels of GTP-bound Rac1 and Cdc42 in a P-Rex1-dependent manner, while NRBP1 knockdown reduced their activation. In addition, NRBP1 associated with P-Rex1, Rac1 and Cdc42, suggesting a scaffolding function for this pseudokinase. NRBP1-mediated promotion of cell migration and invasion was P-Rex1-dependent, while constitutively-active Rac1 rescued the effect of NRBP1 knockdown on cell proliferation and invasion. Generation of reactive oxygen species via a NRBP1/P-Rex1 pathway was implicated in these oncogenic roles of NRBP1. Overall, these findings define a new function for NRBP1 and a novel oncogenic signalling pathway in TNBC that may be amenable to therapeutic intervention.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Proteínas rac1 de Ligação ao GTP/metabolismo , Transdução de Sinais , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Movimento Celular , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Transporte Vesicular/metabolismo
12.
Chembiochem ; 24(6): e202200686, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36534957

RESUMO

The glycopeptide antibiotics (GPAs) are a clinically approved class of antimicrobial agents that classically function through the inhibition of bacterial cell-wall biosynthesis by sequestration of the precursor lipid II. The oxidative crosslinking of the core peptide by cytochrome P450 (Oxy) enzymes during GPA biosynthesis is both essential to their function and the source of their synthetic challenge. Thus, understanding the activity and selectivity of these Oxy enzymes is of key importance for the future engineering of this important compound class. Recent reports of GPAs that display an alternative mode of action and a wider range of core peptide structures compared to classic lipid II-binding GPAs raises the question of the tolerance of Oxy enzymes for larger changes in their peptide substrates. In this work, we explore the ability of Oxy enzymes from the biosynthesis pathways of lipid II-binding GPAs to accept altered peptide substrates based on a vancomycin template. Our results show that Oxy enzymes are more tolerant of changes at the N terminus of their substrates, whilst C-terminal extension of the peptide substrates is deleterious to the activity of all Oxy enzymes. Thus, future studies should prioritise the study of Oxy enzymes from atypical GPA biosynthesis pathways bearing C-terminal peptide extension to increase the substrate scope of these important cyclisation enzymes.


Assuntos
Antibacterianos , Glicopeptídeos , Antibacterianos/química , Glicopeptídeos/química , Peptídeos , Vancomicina/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo
13.
Cell Commun Signal ; 20(1): 197, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550548

RESUMO

Specific members of the Nima-Related Kinase (NEK) family have been linked to cancer development and progression, and a role for NEK5, one of the least studied members, in breast cancer has recently been proposed. However, while NEK5 is known to regulate centrosome separation and mitotic spindle assembly, NEK5 signalling mechanisms and function in this malignancy require further characterization. To this end, we established a model system featuring overexpression of NEK5 in the immortalized breast epithelial cell line MCF-10A. MCF-10A cells overexpressing NEK5 exhibited an increase in clonogenicity under monolayer conditions and enhanced acinar size and abnormal morphology in 3D Matrigel culture. Interestingly, they also exhibited a marked reduction in Src activation and downstream signalling. To interrogate NEK5 signalling and function in an unbiased manner, we applied a variety of MS-based proteomic approaches. Determination of the NEK5 interactome by Bio-ID identified a variety of protein classes including the kinesins KIF2C and KIF22, the mitochondrial proteins TFAM, TFB2M and MFN2, RhoH effectors and the negative regulator of Src, CSK. Characterization of proteins and phosphosites modulated upon NEK5 overexpression by global MS-based (phospho)proteomic profiling revealed impact on the cell cycle, DNA synthesis and repair, Rho GTPase signalling, the microtubule cytoskeleton and hemidesmosome assembly. Overall, the study indicates that NEK5 impacts diverse pathways and processes in breast epithelial cells, and likely plays a multifaceted role in breast cancer development and progression. Video Abstract.


Assuntos
Neoplasias da Mama , Proteômica , Humanos , Feminino , Quinases Relacionadas a NIMA/metabolismo , Linhagem Celular , Neoplasias da Mama/metabolismo , Células Epiteliais/metabolismo , Proteínas de Ligação a DNA , Cinesinas
14.
Nat Struct Mol Biol ; 29(8): 767-773, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35864164

RESUMO

P-Rex (PI(3,4,5)P3-dependent Rac exchanger) guanine nucleotide exchange factors potently activate Rho GTPases. P-Rex guanine nucleotide exchange factors are autoinhibited, synergistically activated by Gßγ and PI(3,4,5)P3 binding and dysregulated in cancer. Here, we use X-ray crystallography, cryogenic electron microscopy and crosslinking mass spectrometry to determine the structural basis of human P-Rex1 autoinhibition. P-Rex1 has a bipartite structure of N- and C-terminal modules connected by a C-terminal four-helix bundle that binds the N-terminal Pleckstrin homology (PH) domain. In the N-terminal module, the Dbl homology (DH) domain catalytic surface is occluded by the compact arrangement of the DH-PH-DEP1 domains. Structural analysis reveals a remarkable conformational transition to release autoinhibition, requiring a 126° opening of the DH domain hinge helix. The off-axis position of Gßγ and PI(3,4,5)P3 binding sites further suggests a counter-rotation of the P-Rex1 halves by 90° facilitates PH domain uncoupling from the four-helix bundle, releasing the autoinhibited DH domain to drive Rho GTPase signaling.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Neoplasias , Sítios de Ligação , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Metástase Neoplásica , Neoplasias/metabolismo , Domínios Proteicos , Transdução de Sinais
15.
Angew Chem Int Ed Engl ; 61(37): e202204957, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35851739

RESUMO

We report our investigation of the utility of peptide crosslinking cytochrome P450 enzymes from biarylitide biosynthesis to generate a range of cyclic tripeptides from simple synthons. The crosslinked tripeptides produced by this P450 include both tyrosine-histidine (A-N-B) and tyrosine-tryptophan (A-O-B) crosslinked tripeptides, the latter a rare example of a phenolic crosslink to an indole moiety. Tripeptides are easily isolated following proteolytic removal of the leader peptide and can incorporate a wide range of amino acids in the residue inside the crosslinked tripeptide. Given the utility of peptide crosslinks in important natural products and the synthetic challenge that these can represent, P450 enzymes have the potential to play roles as important tools in the generation of high-value cyclic tripeptides for incorporation in synthesis, which can be yet further diversified using selective chemical techniques through specific handles contained within these tripeptides.


Assuntos
Histidina , Tirosina , Sistema Enzimático do Citocromo P-450/metabolismo , Histidina/metabolismo , Biossíntese Peptídica , Peptídeos/química , Tirosina/metabolismo
16.
Front Chem ; 10: 868240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464232

RESUMO

Cytochrome P450 enzymes (P450s) are a superfamily of monooxygenases that utilize a cysteine thiolate-ligated heme moiety to perform a wide range of demanding oxidative transformations. Given the oxidative power of the active intermediate formed within P450s during their active cycle, it is remarkable that these enzymes can avoid auto-oxidation and retain the axial cysteine ligand in the deprotonated-and thus highly acidic-thiolate form. While little is known about the process of heme incorporation during P450 folding, there is an overwhelming preference for one heme orientation within the P450 active site. Indeed, very few structures to date contain an alternate heme orientation, of which two are OxyA homologs from glycopeptide antibiotic (GPA) biosynthesis. Given the apparent preference for the unusual heme orientation shown by OxyA enzymes, we investigated the OxyA homolog from kistamicin biosynthesis (OxyAkis), which is an atypical GPA. We determined that OxyAkis is highly sensitive to oxidative damage by peroxide, with both UV and EPR measurements showing rapid bleaching of the heme signal. We determined the structure of OxyAkis and found a mixed population of heme orientations present in this enzyme. Our analysis further revealed the possible modification of the heme moiety, which was only present in samples where the alternate heme orientation was present in the protein. These results suggest that the typical heme orientation in cytochrome P450s can help prevent potential damage to the heme-and hence deactivation of the enzyme-during P450 catalysis. It also suggests that some P450 enzymes involved in GPA biosynthesis may be especially prone to oxidative damage due to the heme orientation found in their active sites.

17.
Cell Mol Life Sci ; 79(3): 167, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233680

RESUMO

The cellular defense mechanisms against cumulative endo-lysosomal stress remain incompletely understood. Here, we identify Ubr1 as a protein quality control (QC) E3 ubiquitin-ligase that counteracts proteostasis stresses by facilitating endosomal cargo-selective autophagy for lysosomal degradation. Astrocyte regulatory cluster membrane protein MLC1 mutations cause endosomal compartment stress by fusion and enlargement. Partial lysosomal clearance of mutant endosomal MLC1 is accomplished by the endosomal QC ubiquitin ligases, CHIP and Ubr1 via ESCRT-dependent route. As a consequence of the endosomal stress, a supportive QC mechanism, dependent on both Ubr1 and SQSTM1/p62 activities, targets ubiquitinated and arginylated MLC1 mutants for selective endosomal autophagy (endophagy). This QC pathway is also activated for arginylated Ubr1-SQSTM1/p62 autophagy cargoes during cytosolic Ca2+-assault. Conversely, the loss of Ubr1 and/or arginylation elicited endosomal compartment stress. These findings underscore the critical housekeeping role of Ubr1 and arginylation-dependent endophagy/autophagy during endo-lysosomal proteostasis perturbations and suggest a link of Ubr1 to Ca2+ homeostasis and proteins implicated in various diseases including cancers and brain disorders.


Assuntos
Autofagia/fisiologia , Cálcio/metabolismo , Endossomos/metabolismo , Proteostase/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Arginina/metabolismo , Células CHO , Linhagem Celular Tumoral , Cricetulus , Células HeLa , Humanos , Lisossomos/metabolismo , Proteólise , Transdução de Sinais/fisiologia , Ubiquitina/metabolismo
18.
PLoS Pathog ; 18(3): e1010308, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35231068

RESUMO

The opportunistic pathogen Acinetobacter baumannii possesses stress tolerance strategies against host innate immunity and antibiotic killing. However, how the host-pathogen-antibiotic interaction affects the overall molecular regulation of bacterial pathogenesis and host response remains unexplored. Here, we simultaneously investigate proteomic changes in A. baumannii and macrophages following infection in the absence or presence of the polymyxins. We discover that macrophages and polymyxins exhibit complementary effects to disarm several stress tolerance and survival strategies in A. baumannii, including oxidative stress resistance, copper tolerance, bacterial iron acquisition and stringent response regulation systems. Using the spoT mutant strains, we demonstrate that bacterial cells with defects in stringent response exhibit enhanced susceptibility to polymyxin killing and reduced survival in infected mice, compared to the wild-type strain. Together, our findings highlight that better understanding of host-pathogen-antibiotic interplay is critical for optimization of antibiotic use in patients and the discovery of new antimicrobial strategy to tackle multidrug-resistant bacterial infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Humanos , Macrófagos , Camundongos , Testes de Sensibilidade Microbiana , Polimixinas/farmacologia , Proteômica
19.
Front Oncol ; 12: 1069635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620582

RESUMO

Using circulating molecular biomarkers to screen for cancer and other debilitating disorders in a high-throughput and low-cost fashion is becoming increasingly attractive in medicine. One major limitation of investigating protein biomarkers in body fluids is that only one-fourth of the entire proteome can be routinely detected in these fluids. In contrast, Human Leukocyte Antigen (HLA) presents peptides from the entire proteome on the cell surface. While peptide-HLA complexes are predominantly membrane-bound, a fraction of HLA molecules is released into body fluids which is referred to as soluble HLAs (sHLAs). As such peptides bound by sHLA molecules represent the entire proteome of their cells/tissues of origin and more importantly, recent advances in mass spectrometry-based technologies have allowed for accurate determination of these peptides. In this perspective, we discuss the current understanding of sHLA-peptide complexes in the context of cancer, and their potential as a novel, relatively untapped repertoire for cancer biomarkers. We also review the currently available tools to detect and quantify these circulating biomarkers, and we discuss the challenges and future perspectives of implementing sHLA biomarkers in a clinical setting.

20.
Nat Struct Mol Biol ; 28(12): 982-988, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887559

RESUMO

Neurofibromin (NF1) mutations cause neurofibromatosis type 1 and drive numerous cancers, including breast and brain tumors. NF1 inhibits cellular proliferation through its guanosine triphosphatase-activating protein (GAP) activity against rat sarcoma (RAS). In the present study, cryo-electron microscope studies reveal that the human ~640-kDa NF1 homodimer features a gigantic 30 × 10 nm array of α-helices that form a core lemniscate-shaped scaffold. Three-dimensional variability analysis captured the catalytic GAP-related domain and lipid-binding SEC-PH domains positioned against the core scaffold in a closed, autoinhibited conformation. We postulate that interaction with the plasma membrane may release the closed conformation to promote RAS inactivation. Our structural data further allow us to map the location of disease-associated NF1 variants and provide a long-sought-after structural explanation for the extreme susceptibility of the molecule to loss-of-function mutations. Collectively these findings present potential new routes for therapeutic modulation of the RAS pathway.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Neurofibromatose 1/genética , Neurofibromina 1/metabolismo , Proteínas ras/metabolismo , Membrana Celular/metabolismo , Proliferação de Células/genética , Microscopia Crioeletrônica , Humanos , Mutação com Perda de Função/genética , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA